腎間質細胞が低酸素を介した 貧血センサーである理由 引用文献です。

肝臓と腎臓のEPO比較

 

Blood. 2008;111:5223-5232

Kidney International Volume 44,  4, 1993, 887-904

Molecules 2022, 27, 1119. 

 

 

HIF-luciferace TGM

Proc Natl Acad Sci U S A 2006 Jan 3;103(1):105-10

Am J Physiol Regul Integr Comp Physiol 307: R13–R25, 2014.

 

Hypxia への生体応答

J Appl Physiol 120: 334–343, 2016.

Eur J Clin Invest. 2010 Aug;40(8):735-41.

 

腎の酸素供給

Am J Physiol Renal Physiol 295: F1259–F1270, 2008.

 

腎間質細胞のEPO

J Clin Invest. 2016;126(4):1425–1437. 

Kidney International,Vol.43(1993),p.815—823

 

腎間質酸素濃度

Diabetologia (2003) 46:1153–1160

 

近位尿細管HIF活性化マウス

J Clin Invest. 2016;126(4):1425–1437

 

尿細管のNa再吸収

Clin J Am Soc Nephrol 10: 676–687,

 

Glomerulotubular Balance

Clin J Am Soc Nephrol 10: 676–687, April, 2015

 

糸球体での濾過圧

Clin J Am Soc Nephrol. 2014 9: 1461

 

腎不全ラットの腎酸素濃度は高い

Kidney International, Vol. 61 (2002), pp. 542–546

 

AIIで虚血 EPO上昇

Hypertension. 2006;47:1062-1066

Kidney International, Vol. 60 (2001), pp. 83–86

 

HypvolemiaでEPO増加

Journal of Physiology (1995),488.1,pp.181-191

 

 

肥満とEPO

Cardiovascular Diabetology 2012, 11:116

Nephrol Dial Transplant (2008) 23: 3946–3952

 

 

SGLT2i  関連

J Clin Med Res. 2016;8(12):844-847

Circulation. 2020;142:1713–1724. 

Am J Physiol Cell Physiol 300: C6–C8, 2011;

Clin J Am Soc Nephrol 10: 676–687,

Kidney International Vol.31(1987),p.918

Kidney International (2012) 81, 1179–1198; 

 

Am J Physiol Renal Physiol 308: F1343–F1357, 2015.

Physiological Reports. 2021;9:e14890

Am J Physiol Renal Physiol 309: F227–F234, 2015

Physiol Rev 91: 733–794, 2011

Kidney Int 1993 Nov;44(5):1149-62.