腎間質細胞が低酸素を介した貧血センサーである理由 引用文献です。
肝臓と腎臓のEPO比較
Blood. 2008;111:5223-5232
Kidney International Volume 44, 4, 1993, 887-904
Molecules 2022, 27, 1119.
HIF-luciferace TGM
Proc Natl Acad Sci U S A 2006 Jan 3;103(1):105-10
Am J Physiol Regul Integr Comp Physiol 307: R13–R25, 2014.
Hypxia への生体応答
J Appl Physiol 120: 334–343, 2016.
Eur J Clin Invest. 2010 Aug;40(8):735-41.
腎の酸素供給
Am J Physiol Renal Physiol 295: F1259–F1270, 2008.
腎間質細胞のEPO
J Clin Invest. 2016;126(4):1425–1437.
Kidney International,Vol.43(1993),p.815—823
腎間質酸素濃度
Diabetologia (2003) 46:1153–1160
近位尿細管HIF活性化マウス
J Clin Invest. 2016;126(4):1425–1437
尿細管のNa再吸収
Clin J Am Soc Nephrol 10: 676–687,
Glomerulotubular Balance
Clin J Am Soc Nephrol 10: 676–687, April, 2015
糸球体での濾過圧
Clin J Am Soc Nephrol. 2014 9: 1461
腎不全ラットの腎酸素濃度は高い
Kidney International, Vol. 61 (2002), pp. 542–546
AIIで虚血 EPO上昇
Hypertension. 2006;47:1062-1066
Kidney International, Vol. 60 (2001), pp. 83–86
HypvolemiaでEPO増加
Journal of Physiology (1995),488.1,pp.181-191
肥満とEPO
Cardiovascular Diabetology 2012, 11:116
Nephrol Dial Transplant (2008) 23: 3946–3952
SGLT2i 関連
J Clin Med Res. 2016;8(12):844-847
Circulation. 2020;142:1713–1724.
Am J Physiol Cell Physiol 300: C6–C8, 2011;
Clin J Am Soc Nephrol 10: 676–687,
Kidney International Vol.31(1987),p.918
Kidney International (2012) 81, 1179–1198;
Am J Physiol Renal Physiol 308: F1343–F1357, 2015.
Physiological Reports. 2021;9:e14890
Am J Physiol Renal Physiol 309: F227–F234, 2015
Physiol Rev 91: 733–794, 2011
Kidney Int 1993 Nov;44(5):1149-62.